Inorganic Application Note

Sulfur in Copper Base Materials

Instrument

CS-200, 300, 400, 444, and 600-Series Determinators (Differences in instrument setup for the 600-Series are noted in parenthesis.)

Calibration Standard

LECO 502-403 Copper Pin, NIST SRM 885 refined copper pin, or other suitable standards

Accessories

Preheated LECO 528-018 Ceramic Crucibles, 773-579 Metal Scoop, 502-403 Copper Pin or other similar-sized copper solid, 501-263 Copper Accelerator

Sample Weight ~1.0 gram

Sample Preparation

Surface contamination on the sample can cause significant errors in the analytical data and care must be taken to ensure a clean representative sample is analyzed.

Program Settings

Pre-Analyze Purge: 10 seconds
Pre-Analyze Delay: 25 seconds
Sulfur Minimum Time-Out: 60 seconds
Sulfur Comparator Level: 1.00%

Clean Interval: Every 50 analyses

Power Level: Refer to Instrument Set-up for details; typically the Power Level Knob is set between

the 12 and 3 o'clock position. (CS600-Series: Typically the Furnace Power is set between

30 and 40.)

Notes

- 1. Solid samples burn less aggressively than chips or powders. Care should be given to setting up the instrument with the most dense sample. It is suggested that 502-403 Copper Pin Samples or a similar solid copper sample weighing ~1.0 g be used when setting up the instrument. Place the sample in the crucible on top of the accelerator.
- A clean combustion tube and dust filter are essential before starting this procedure.

Instrument Setup

This method lowers the power level from the maximum set in a typical method in order to decrease the dust produced from combustion of the sample.

- 1. Turn the Power Level knob counterclockwise to a twelve o'clock position. The knob is located on the front panel. (CS600-Series: Set the Furnace Low and High Power to 30 in method parameters.)
- 2. Add ~1.0 g—one level 773-579 Metal Scoop—501-263 Copper Accelerator to a pre-heated 528-018 Crucible so that it is evenly distributed on the bottom of the crucible.
- 3. Place the LECO 502-403 Copper Pin or ~1.0 g copper solid into the crucible.
- 4. Enter a 1.0 g weight into the instrument.
- 5. Place crucible on furnace pedestal and analyze.
- 6. For a complete combustion, the following plate currents should be observed: Maximum: ~250 to 300 mA; 20 seconds into combustion cycle: ~180 to 220 mA (CS600-Series: Maximum: ~280 to 320 mA; 20 seconds into combustion cycle: ~220 to 260 mA)
- 7. The sulfur peak should start between 15 and 25 seconds after the combustion cycle begins. (CS600-Series: For solids, sulfur peak should start between 10 and 20 seconds after the combustion cycle begins. For powders and chips, the sulfur peak should start between 5 and 15 seconds.)
- 8. Immediately following the combustion cycle, open the furnace and remove the crucible using the tongs. Look at the sample while it is still red hot. It should visually be a flat smooth melt with no dark spots at the bottom of the crucible.

Instrument Setup (continued)

- 9. If the plate current exceeds 320 mA (CS600-Series: 360 mA) for most of the analysis then dust has probably been generated which will more than likely cause sulfur recovery losses.
- 10. a. If steps 6 through 8 are satisfied, proceed to step 1 of Method.
 - b. If plate current exceeds 320 mA (CS600-Series: 360 mA) for most of the analysis—step 9, turn power level control slightly counter-clockwise to reduce the power level. (CS600-Series: Reduce the Furnace Low and High Power settings in method parameters.) Manually brush dust filter and cleaner head to remove all dust that has been generated then repeat steps 3 through 8.
 - c. If steps 6 through 8 are not satisfied, continue until desired plate current in achieved.

Method

- 1. Preheat ceramic crucibles in a muffle or tube furnace at 1250°C for not less than 15 minutes or at 1000°C for not less than 40 minutes. The crucibles are removed from the furnace, allowed to cool for 1 to 2 minutes and placed in a desiccator for storage. If the crucibles are not used within four hours, they should be rebaked.
- 2. Determine the blank:
 - a. Enter 1.000 gram weight into weight stack.
 - b. Add ~1.0 g—one level 773-579 Metal Scoop—501-263 Copper Accelerator to a preheated 528-018 Crucible so that it is evenly distributed on the bottom of the crucible.
 - c. Place crucible on furnace pedestal and analyze.
 - d. Repeat steps 2a through 2c a minimum of five times.
 - e. Enter blank following routine outlined in operator's instruction manual.
- 3. Calibrate:
 - a. Add ~1.0 g—one level 773-579 Metal Scoop—501-263 Copper Accelerator to a preheated 528-018 Crucible so that it is evenly distributed on the bottom of the crucible.
 - b. Weigh \sim 1.0 g calibration standard and place into the center of the crucible entering the weight into the weight stack.
 - c. Place crucible on furnace pedestal and analyze.
 - d. Repeat steps 3a through 3c a minimum of five times and calibrate the instrument following the auto calibration procedure as outlined in the operator's instruction manual.
 - e. Verify the calibration by analyzing the calibration standard again. It should fall within the expected tolerance. If not repeat steps 3a through 3e.
- 4. Analyze samples:
 - a. Add ~1.0 g—one level 773-579 Metal Scoop—501-263 Copper Accelerator to a preheated 528-018 Crucible so that it is evenly distributed on the bottom of the crucible.
 - b. Weigh ~ 1.0 g sample and place into the center of the crucible entering the weight into the weight stack.
 - c. Place crucible on furnace pedestal and analyze.

Typical Data Obtained on a LECO CS-444

Calibrated with BAM NR 227@0.122% S

Sample	Weight (g)	Sulfur (%)
BAM NR 227	0.9511	0.123
@ 0.122% S	0.9668	0.123
	0.9806	0.122
BCS 183/4	0.9768	0.110
Leaded Gunmetal	0.9549	0.110
Chips @0.11% S	0.9460	0.110
BCS 180/2	0.9287	0.0058
Copper-Nickel Chips	1.0416	0.0059
@0.006% S	0.9293	0.0056

Calibrated with NIST 885 @0.0018% S

Sample	Weight (g)	Sulfur (%)
NIST 885	0.8989	0.0018
Refined Copper	0.8803	0.0019
Pin @ 0.0018% S	0.8959	0.0018
LECO 502-403	0.9991	0.00093
Copper Pin	0.9930	0.00096
@0.00093% S	0.9957	0.00091

NOTE: If carbon analysis is required simultaneously; this same technique applies.

LECO Corporation
3000 Lakeview Ave. • St. Joseph, MI 49085-2396
Phone: 800-292-6141 • Fax: 269-982-8977
info@leco.com • www.leco.com • ISO-9001 No. FM 24045