Organic Application Note

Two-Step Loss-on-Ignition (LOI) on Cement

Accessories

529-047 Ceramic Crucible, 778-891 Quartz (optional)

Sample Weight

 $\sim 1.5 g$

Analysis Time

~2 hours

Calibration Standard

No calibration necessary; check balance.

General Settings

Crucible Density: 3.00 (Crucible density should be set at 2.2 if quartz crucible is used)

Cover Density: 3.00 Sample Density: 1.50

Steps Information

	Step 1	Step 2
Covers:	Off	Off
Ramp Rate:	6	40
Ramp Time (h:m):	00:13	00:22
Starting Temp (°C):	25	105
Ending Temp (°C):	105	1000
Atmosphere:	Air	Air
Flow Rate:	Medium	Medium
Hold Time (h:m)	00:00	00:00

Constants

	этер і	Step 2
Constant Weight:	0.04%	0.04%
Weight/Time (h:m):	00:09	00:09

Equations

Initial Weight: W[Initial]

Wt Loss Step 1: ((W[Initial]-W[Step1])/W[Initial])*100 Wt Loss Step 2: ((W[Step1]-W[Step2])/W[Initial])*100

Residue: (W[Step2]/W[Initial])*100

Procedure

- 1. Check furnace balance with 1 g weight in "sequence test."
- Select method as described above.
- 3. Enter ID codes if a PC is used, if not, they will be entered later with the DSP.
- 4. Press Analyze.
- 5. Load empty crucibles into the furnace carousel making sure a crucible is in the reference position.
- 6. Press Start to locate and tare crucibles.
- 7. The furnace cover opens and each crucible is presented to the operator for sample loading.
- 8. Put 1.5 g sample into the crucible.
- 9. Press Next to continue.
- 10. When all crucibles are loaded, analysis begins.

Typical Results

Sample	Step 1	Step 2	Residue
Cement #1	1.774	11.78	86.44
	1.810	11.77	86.40
	1.786	11.77	86.40
	1.846	11.78	86.34
	1.941	11.77	86.24
	1.812	11.77	86.36
	1.789	11.76	86.40
Average	1.823	11.77	86.37
Std. Dev. n = 7	0.057	0.007	0.066
Cement #2	1 757	15.20	02.00
Cement #2	1.757	15.38	82.88 82.83
	1.755 1.766	15.42 15.42	82.80
	1.754	15.45	82.76
	1.765	15.45	82.76 82.76
		15.43	82.78
	1.756		
Λ	1.745	15.43	82.80
Average	1.757	15.42	82.81
Std. Dev. n = 7	0.007	0.02	0.039

